Training an Adaptive Critic Flight Controller

Silvia Ferrari
Advisor: Prof. Robert F. Stengel
Princeton University

FAA/NASA Joint University Program on Air Transportation, Princeton University, Princeton, NJ

April 5-6, 2001

Introduction

Classical/neural synthesis of control systems
 Prior knowledge
 Adaptive control and artificial neural networks

Adaptive critics

Learn in real time

Cope with noise

Cope with many variables

Plan over time in a complex way

...

• Adaptation takes place during every time interval:

Action network takes immediate control action

Motivation

- Provide full envelope control
- Multiphase learning:

Pre-training phase, motivated by corresponding linear controller On-line training phase, during simulations or testing

On-line training accounts for:
 Differences between actual and assumed dynamic models

Nonlinear effects not captured in linearizations

Potential applications:

Incorporate pilot's knowledge into controller *a-priori*

Uninhabited air vehicles control

Aerobatic flight control

Table of Contents

- Aircraft control design approach
- Initialization, or pre-training phase
- Adaptive critic neural network controller
- On-line training
- Resilient backpropagation

Aircraft Control Design Approach

Linearizations

Linear Control Design

Linearizations:

$$\dot{\mathbf{x}}(t) = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), \mathbf{p}(t)]$$

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F} \Delta \mathbf{x}(t) + \mathbf{G} \Delta \mathbf{u}(t)$$

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F}_{L} \Delta \mathbf{x}_{L}(t) + \mathbf{G}_{L} \Delta \mathbf{u}_{L}(t)$$

$$\Delta \dot{\mathbf{x}}_{LD}(t) = \mathbf{F}_{LD} \Delta \mathbf{x}_{LD}(t) + \mathbf{G}_{LD} \Delta \mathbf{u}_{LD}(t)$$

Linear control design:

- Longitudinal
- Lateral-directional

Linear Proportional-Integral Controller

Closed-loop stability: $\mathbf{x}(t) \rightarrow \mathbf{x}_c$, $\mathbf{u}(t) \rightarrow \mathbf{u}_c$, $\tilde{\mathbf{y}}(t) \rightarrow 0$

Omitting Δ 's, for simplicity:

$$\tilde{\mathbf{y}}(t) = \mathbf{y}_{S}(t) - \mathbf{y}_{C}, \quad \tilde{\mathbf{u}}(t) = \mathbf{u}(t) - \mathbf{u}_{C}, \dots, \quad \mathbf{y}_{c} = \text{desired output}, \quad (\mathbf{x}_{c}, \mathbf{u}_{c}) = \text{set point}.$$

Proportional-Integral Neural Network Controller

Where: $\mathbf{x}(t) \rightarrow \mathbf{x}_c$, $\mathbf{u}(t) \rightarrow \mathbf{u}_c$, $\tilde{\mathbf{y}}(t) \rightarrow 0$, $\mathbf{y}_s(t) \rightarrow \mathbf{y}_c$

Algebraic Neural Network Pre-training Phase

Combine longitudinal and lateral-directional networks:

Obtain action network:

Comparison of Neural Network and Linear Controllers Between Training Points

Adaptive Critic Implementation: Action Network On-line Training

Train action network, at time t, holding the critic parameters fixed

Adaptive Critic Implementation: Critic Network On-line Training

Train critic network, at time t, holding the action parameters fixed

[Balakrishnan and Biega, 1996]

On-line Neural Network Training Goal

• Given a target, $\mathbf{t}(\mathbf{p})$, for the network output, $\mathbf{z}(\mathbf{p})$:

$$\min_{\mathbf{w}} E = \min_{\mathbf{w}} \left\{ \mathbf{t}(\mathbf{p}) - \mathbf{z}(\mathbf{p}) \right|^{2} \right\} \begin{cases} \mathbf{p} = \text{network input} \\ E = \text{network performance} \end{cases}$$

with network parameters, w, provided by the initialization phase.

Comparison of Neural Network Training Algorithms

Technique	Speed	Implement. Complexity	Memory Requirement	Main Drawbacks
Backpropagation	Poor	Low	Small	• Scaling • Speed
Levenberg- Marquardt	Excellent	Medium	Large	MemoryComplexity
Extended Kalman Filter	Excellent (Highest)	High	Large	MemoryComplexity
Resilient Backpropagation	Medium- High	Low	Medium- Small	• Local convergence

Resilient Backpropagation

Resilient Backpropagation Algorithm Performance

Adaptive critics neural network controller test case: Action Network

Summary and Conclusions

- Adaptive critic flight controller:
 - Algebraic pre-training based on a-priori knowledge
 - On-line training during simulations (severe conditions)

Improve aircraft control performance under extreme conditions

- Systematic approach for designing nonlinear control systems, innovative neural network training techniques
- Adaptive critic neural network controller implementation

Future Work:

• Testing: acrobatic maneuvers, severe operating conditions, coupling and nonlinear effects!